Directing Shallow-Water Waves Using Fixed Varying Bathymetry Designed by Recurrent Neural Networks

نویسندگان

چکیده

Directing shallow-water waves and their energy is highly desired in many ocean engineering applications. Coastal infrastructures can be protected by reflecting to deep water. Wave harvesting efficiency improved focusing on wave converters. Changing water depth effectively affect celerity therefore the propagation of waves. However, determining spatially varying bathymetry that direct a designed location not trivial. In this paper, we propose novel machine learning method design optimize for directing waves, which assumed fixed time without considering morphodynamics. Shallow-water theory was applied establish mapping between mechanics recurrent neural networks (RNNs). Two wave-equivalent RNNs were developed model over bathymetry. The resulting trained focusing. We demonstrate optimized reflect refract various locations. also foresee potential new tools similarly based mathematical equivalence networks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shallow Water Laser Bathymetry: Accomplishments and Applications

Airbome Laser Bathymetry (ALB) is a technique primarily aimed at augmenting nautical chart production and bathymetric mapping capability in relatively shallow coastal waters. The potential of waterpenetrating airborne laser radar to provide cost effective characterization of underwater topography to depths as great as 50 meters, depending on water clarity, has triggered a number of research and...

متن کامل

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Solving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks

‎Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints‎. ‎In this paper‎, ‎to solve this problem‎, ‎we combine a discretization method and a neural network method‎. ‎By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem‎. ‎Then‎, ‎we use...

متن کامل

SWAN predictions of waves observed in shallow water onshore of complex bathymetry

a r t i c l e i n f o SWAN model predictions, initialized with directional wave buoy observations in 550-m water depth offshore of a steep, submarine canyon, are compared with wave observations in 5.0-, 2.5-, and 1.0-m water depths. Although the model assumptions include small bottom slopes, the alongshore variations of the nearshore wave field caused by refraction over the steep canyon are pre...

متن کامل

Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays

In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Water

سال: 2023

ISSN: ['2073-4441']

DOI: https://doi.org/10.3390/w15132414